Randomized controlled trial of electro-stimulation therapies to modulate retinal blood flow and visual function in retinitis pigmentosa

Ava K. Bittner,1 Kenneth Seger,1 Rachel Salveson,2 Samantha Kayser,1 Natalia Morrison,3 Patricia Vargas,4 Deborah Mendelsohn,4 Jorge Han,4 Hua Bi,1 Gislin Dagnelie,5 Alexandra Benavente6 and Jessica Ramella-Roman7,8

1College of Optometry, Nova Southeastern University, Fort Lauderdale, FL, USA
2College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
3Healing Blossom – Acupuncture and Holistic Medicine, Miami, FL, USA
4Medical Sonography Program, College of Health Care Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
5Johns Hopkins Wilmer Eye Institute, Baltimore, MD, USA
6SUNY College of Optometry, New York, NY, USA
7Department of Biomedical Engineering, Florida International University, Miami, FL, USA
8Department of Cellular Biology and Pharmacology and Ophthalmology, Herbert Wertheim College of Medicine, Miami, FL, USA

ABSTRACT.

Purpose: We examined changes in visual function and ocular and retinal blood flow (RBF) among retinitis pigmentosa (RP) participants in a randomized controlled trial of electro-stimulation therapies.

Methods: Twenty-one RP participants were randomized (1:1:1) to transcorneal electrical stimulation (TES) at 6 weekly half-hour sessions, electro-acupuncture or inactive laser acupuncture (sham control) at 10 half-hour sessions over 2 weeks. Early Treatment of Diabetic Retinopathy Study (ETDRS) visual acuity (VA), quick contrast sensitivity function, Goldmann visual fields, AdaptDx scotopic sensitivity, spectral flow and colour Doppler imaging of the central retinal artery (CRA), and RBF in macular capillaries were measured twice pre-treatment, after 2 TES sessions, within a week and a month after intervention completion.

Results: We measured a significant improvement in retrobulbar CRA mean flow velocity for both the TES (p = 0.038) and electro-acupuncture groups (p = 0.001) on average after 2 weeks of treatment when compared to sham controls. Transcorneal electrical stimulation (TES) and electro-acupuncture subjects had significant 55% and 34% greater increases, respectively, in RBF in the macular vessels when compared to sham controls (p < 0.001; p = 0.008) within a week of completing six TES sessions or a month after electro-acupuncture. There was a significant difference in the proportion of eyes that had improved visual function when comparing the three intervention groups (p = 0.038): four of seven TES subjects (57%), two of seven electro-acupuncture subjects (29%) and none of the seven control subjects (0%) had a significant visual improvement outside of typical test–retest variability at two consecutive post-treatment visits.

Conclusion: Increased blood flow following electro-stimulation therapies is an objective, physiological change that occurred in addition to visual function improvements in some RP patients.

Key words: acupuncture – retinal blood flow – retinitis pigmentosa – transcorneal electrical stimulation

Introduction

At the present time, there are no proven therapeutic options to improve or halt the slowly progressive visual loss that occurs in patients with RP. Electro-acupuncture and TES are minimally invasive therapies that are readily available. Previous basic science studies of electro-stimulation therapies involving in vitro or animal models of RP have indicated that electro-acupuncture (Pagani et al. 2006) or TES (Morimoto et al. 2007, 2012; Rahmani et al. 2013; Hanif et al. 2016) may have the potential to slow disease progression by preserving retinal function and thickness. To date, a few human studies or reports of electro-acupuncture without a randomized control group (Wong & Ching 1980; Dabov et al. 1985; Kiser & Dagnelie 2008; Bittner et al. 2014; Blechschmidt et al. 2016) and small-scale and/or relatively short-term (i.e. up to a year) randomized controlled trials (RCTs) of TES (Schatz et al. 2011, 2017; Robles-Camarillo et al. 2013) involving RP patients have provided preliminary support that these interventions may help to improve various aspects of visual function. The potential for a beneficial effect following acupuncture
is further supported by research that has demonstrated activation of visual cortical areas (Siedentopf et al. 2002; Li et al. 2003, 2010) in response to stimulation of vision-related acupoints in normals.

Previous basic science studies indicate that electro-stimulation most likely does not have a direct effect on photoreceptor cell survival or function, but rather may exert an indirect effect on photoreceptors through its modulation of retinal microglia and secretion of several retinal neurotrophic factors and nerve growth factors from Müller cells, as well as changes in the microenvironment, such as downregulation of cytokines responsible for regulating immune responses (i.e. interleukins), or reductions in gene expression levels for proteins associated with inflammation or apoptosis (Zhou et al. 2012; Sehic et al. 2016; Tao et al. 2016). Previous in vitro studies suggest that electro-stimulation of the retina inhibits microglial activation and their secretion of proinflammatory and toxic cytokines (Schmid et al. 2009; Zhou et al. 2012); however, it is also possible that the microglia response in vivo is due to its sensitivity to microenvironment changes rather than to direct effects of electro-stimulation. It has been proposed that the neuroprotection mediated by electro-stimulation occurs via several countervailing trophic factors that mediate microglial activation and suppression to create homeostatic balance and a nurturing microenvironment suitable for the rescue of apoptotic photoreceptor cells.

Presently, no clinical studies have confirmed these proposed hypotheses for the mechanisms that may be involved with visual and retinal preservation in RP patients following electro-acupuncture or TES. This is largely due to the inability to non-invasively measure these factors directly in human subjects. However, it is possible to measure blood flow to the eye and within retinal vessels, which could serve as a surrogate end-point or biomarker of other retinal changes. Evidence of improved blood flow following electro-stimulation therapies has been documented in studies involving healthy subjects without RP. Immediately following needling of vision-related acupoints, normal subjects developed a significant increase in blood flow velocity in the ophthalmic artery (Litscher 2002), and decreased vascular resistance in the CRA and posterior ciliary arteries (Takayama et al. 2012). Electro-acupuncture increases blood fluidity by decreasing platelet aggregation in the systemic vascular system of normal subjects and may involve an endogenous adrenergic mechanism (Ishikawa et al. 2012). Healthy individuals without RP who received a single session of TES experienced an increase in chorioretinal blood flow increased in the macula, as well as midway between the optic nerve and macula, that was sustained for at least 24–40 hr (Kurimoto et al. 2010). Transcorneal electrical simulation (TES) administered to cats without retinal degenerative disease produced reflectance changes (i.e. intrinsic signals) at the optic disc and retinal vessels in a manner that suggests that TES primarily activates retinal ganglion cells first and blood flow is recruited afterwards (Mihashi et al. 2011; Morimoto et al. 2014). Thus, a parsimonious hypothesis for electro-acupuncture or TES-induced mechanisms may be related to changes in ocular and RBF, which could help serve as an indicator of physiological changes that occur in response to these interventions.

The goal of the current study was to determine whether evidence exists to support the hypotheses that ocular and RBF in RP can improve after treatment with electro-acupuncture or TES in a small-scale randomized, double-masked, placebo controlled trial. Within the context of this single phase, 3-arm trial, we were interested in comparing changes in haemodynamics and visual function for these two electro-stimulation therapies to those for sham intervention across RP patients with a wide range of vision loss.

Patients and Methods

Institutional Review Board approval was obtained from the Nova Southeastern University (NSU) and this research followed the tenets of the Declaration of Helsinki. Written informed consent was obtained from the subjects after explanation of the nature and possible consequences of the study. The work presented here is HIPAA compliant.

Subjects

Trial participants included 21 adults with a confirmed diagnosis of RP. Their mean age was 44 years [standard deviation (SD): 12 years; range: 25–70 years], and nine were women (43%). There were ten Caucasians, six Hispanic/Latinos, three African Americans and two Asians. One-third of the subjects (n = 7) were recruited through the clinical optometric practices (i.e. The Eye Care Institute and Lighthouse of Broward) affiliated with NSU in Fort Lauderdale, Florida, USA. The remaining 14 subjects received diagnoses of RP from eye care providers outside these practices and self-referred after learning of the trial through online listings (e.g. clinicaltrials.gov NCT02086890). Exclusion criteria were vision loss due to ocular diseases other than RP, previous electro-stimulation therapy for RP, non-English speaking, history of excessive bleeding, implanted cardiac pacemaker, pregnancy or steroidal systemic medication. No participants had changes in their prescription medications or over the counter supplements during the study.

Study design

The study coordinator (SK) received the randomization allocation for each individual after completion of baseline testing from a co-investigator (GD) at another institution who had no prior contact or information regarding the participants, and generated the assignment schedule prior to the start of the trial using random permuted blocks that were unknown to other co-investigators. Throughout the trial, all subjects remained in the treatment group to which they were initially randomized. Subjects were masked to treatment status (i.e. real or sham) as they were informed that they may be randomized to one of the six following alternatives: TES with or without active electro-stimulation, electro-acupuncture with needles applied to vision-related acupoints or random locations on the body, or laser acupuncture with an active or inactive (i.e. red light only) laser. In fact, the trial only administered three possible alternatives: TES with active electro-stimulation (n = 7), electro-acupuncture applied to vision-related acupoints (n = 7) or laser acupuncture with an inactive (i.e. red light only) laser (n = 7).
All vision tests were administered by a single examiner (AKB) who was masked to treatment allocation. All outcome measures involving ocular or RBF or psychophysical vision measures were collected four or five times: at two baseline visits pre-intervention (mean intervisit time = 12.7 days, range 1–42 days); after completing two of six TES sessions; within 1 week of completing all six weekly TES sessions or all ten acupuncture sessions within 2 weeks (either electro-acupuncture or sham, inactive laser acupuncture); and 1 month after treatment completion. Figure 1 includes a chart to show the flow of participants, randomization to each group, interventions, timing and study visits at which the baseline and follow-up outcome measures were obtained. Only one subject, who was in the sham control group, was lost to follow up at the last visit since she was unable to take time off from work to travel to the study site. Optical coherence tomography (OCT) and electrophysiology were performed once pre-intervention and once at the 1-month post-intervention follow-up. Each visit lasted approximately 5–6 hr. Subjects were offered a lunch voucher to take a break about 2–4 hr after the start of the visit and after the ultrasound measures of ocular blood flow. At each visit, tests were obtained in the same order and time of day to minimize diurnal or other fluctuations. Data collection occurred from September 2014 through June 2015.

Interventions

For TES, a single-use, sterile DTL plus electrode was placed on the surface of each eye with corneal anaesthetic drops (Proparacaine) and gold-cup ground electrode on the temple, as in a previous trial (Schatz et al. 2011). Transcorneal electrical simulation (TES) was administered to both eyes by an optometrist (KS) using an FDA approved, commercially available neurostimulator (TrioStim; Mettler Electronics Corporation, Anaheim, CA, USA), off-label, as shown in Fig. 2A. The microcurrent settling of this instrument was set to deliver rectangular biphasic current pulses (5-ms positive, directly followed by 5-ms negative) with amplitudes up to 750 μA (the instrument’s maximum level) at a frequency of 20 Hz, for 30 min during six weekly sessions. At the first session, we followed a previously published (Schatz et al. 2011) alternative forced choice procedure to assess each subject’s mean electrical phosphene threshold (EPT) in a dark room, which we intended to use to

![Diagram](image-url)
Fig. 1. A chart of the flow of participants, randomization to each group, interventions, timing and study visits at which the baseline and follow-up outcome measures were obtained.
Acta Ophthalmologica

The seven TES subjects had an EPT ≤500 μA and was stimulated at 700 μA, whereas the other six TES subjects did not have a measurable EPT ≤500 μA in either eye and received stimulation at the maximum level of 750 μA, which was maintained at a constant level at all six sessions. The absence of an EPT in most subjects was likely due to advanced or severe retinal degeneration as thresholds are elevated in RP compared to normals and correlated with visual field loss in RP (Morimoto et al. 2006). Previous studies reported RP patients with logMAR VA 0.02–0.9 had a mean EPT of 371 μA ± 223 (Naycheva et al. 2012), and those with VA worse than 2.0 logMAR had a mean EPT of 640 μA ± 101 (Morimoto et al. 2006).

A previously established electro-acupuncture protocol (Bittner et al. 2014) was administered by a licensed acupuncturist (NM) according to the same treatment schedule, duration and practice location as the electro-acupuncture group.

Outcome measures

Retrobulbar ocular haemodynamics in the CRA were measured with colour Doppler imaging and spectral flow Doppler using the GE Logiq 7 according to previously published guidelines (Stalmans et al. 2011) and procedures (Kayser et al. 2017) by trained sonographers (DM, PV, JH) who were masked to the subjects’ intervention group. Mean peak systolic velocity (PSV) and end diastolic velocity (EDV) were used to calculate mean flow velocity (MFV) using the equation: MFV = (PSV+2xEDV)/3 (Naqvi et al. 2013).

Retinal blood flow (RBF) velocity was assessed in macular capillaries using instrumentation developed by our co-investigator (JR), which included a retinal imager and RBF velocimeter. The optical design, image registration, calibration and results in human subjects have been previously described in detail (Duncan et al. 2010; Lemailliet et al. 2010; Ibrahim et al. 2015). This approach relies on tracking the non-uniform distribution of red blood cells within the capillary and is capable of dealing with very low signal-to-noise ratios. Vessel diameter and blood velocity were used to calculate mean flow velocity [MFV = (((Diameter/2)^2)*π)*1000)*velocity] as a measure of RBF. Reliable measures were not obtainable in RP subjects who were very photophobic or had advanced RP with nystagmus or poor fixation; therefore, we analysed RBF data from nine eyes in five TES subjects, 10 eyes in five electro-acupuncture subjects and 11 eyes in six sham controls.

Best-corrected visual acuity (BCVA) was measured in each eye using the (ETDRS; Lighthouse International, New York, NY, USA) three-chart series at three metres, which was modified to one metre for severely reduced acuities if fewer than 10 letters were initially identified. Contrast sensitivity (CS) was measured with the Pelli-Robson chart binocularly at one metre (Metropia, Ltd., Essex, UK), followed by the quick Contrast Sensitivity Function (qCSF) letter identification test (Adaptive Sensory Technology, San Diego, CA, USA) with 25 trials for each eye at 4 m, or at 2 m for subjects with severely reduced VA worse than 0.7 logMAR, tested in each eye, as well as binocularly with and without a 4% transmission U23 NoIR filter to simulate low luminance. Goldman visual field (GVF) kinetic perimetry was obtained in each eye using V4e and III4e test targets according to previously published methodology (Bittner et al. 2011), which was later digitized to calculate the total seeing log retinal area (Barry et al. 2016). Mean scotopic sensitivity within the first 5–6 min of dark-adaptation after a 76% initial bleach flash was assessed at 5° from fixation in each eye with the AdaptDx (Maculogix, Hummelstown, PA, USA). For 18 of our subjects (86%), their responses during AdaptDx scotopic sensitivity testing were only cone mediated (i.e. no measurable rod intercept; <2 log units sensitivity). Multifocal electroretinography (mERG) was obtained in each eye with Burian-Allen electrodes and the Veris system (Electro-Diagnostic Imaging, Inc., Milpitas, CA, USA) using an array of 103 hexagons that stimulated the central 40–50 degrees of the retina. Optical coherence tomography (OCT) using the Cirrus 4000 (Zeiss, San Diego, CA, USA) was obtained to detect any presence of cystoid changes within the foveal region.

Data analysis

Primary outcome measures included blood flow in the CRA and RBF in the macular vessels, while the secondary outcomes included the visual function measures. Normal distribution of variables was confirmed with Shapiro-Wilk analysis. PSV was not
normally distributed at the second follow-up visit and therefore we performed a test-retest variability (CR.95) of visual function tests in RP subjects from previously published studies, for the two baseline visits in our trial, and the values we used to consider changes as significant (i.e. outside the CR.95), as well as the number of subjects in our trial who had a significant improvement beyond this defined amount of test-retest variability at both follow-up visits.

Table 1. Test–retest variability (CR.95) of visual function tests in RP subjects from previously published studies, for the two baseline visits in our trial, and the values we used to consider changes as significant (i.e. outside the CR.95), as well as the number of subjects in our trial who had a significant improvement beyond this defined amount of test-retest variability at both follow-up visits.

<table>
<thead>
<tr>
<th>Test</th>
<th>Previously published</th>
<th>Present trial baseline</th>
<th>Considered significant</th>
<th>Present trial improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETDRS VA</td>
<td>0.14–0.23 logMAR (Kiser et al. 2005)</td>
<td>0.15 logMAR</td>
<td>≥0.20 log units</td>
<td>2 TES</td>
</tr>
<tr>
<td>Pelli-Robson CS</td>
<td>−0.30 logCS (Kiser et al. 2005)</td>
<td>0.21 logCS</td>
<td>≥0.25 log units</td>
<td>None</td>
</tr>
<tr>
<td>GVF: V4e retinal area</td>
<td>33% (Bittner et al. 2011)</td>
<td>65% (between-visit)</td>
<td>≥65%</td>
<td>2 TES</td>
</tr>
<tr>
<td>GVF: III4e retinal area</td>
<td>100% (between-visit)</td>
<td>≥100%</td>
<td>1 TES</td>
<td></td>
</tr>
<tr>
<td>Cone-mediated AdaptDx</td>
<td>Not previously reported</td>
<td>0.5 log units</td>
<td>0.5 log units</td>
<td>1 Electro-acupuncture</td>
</tr>
</tbody>
</table>

ETDRS = Early Treatment of Diabetic Retinopathy Study, RP = retinitis pigmentosa, TES = transcorneal electrical simulation, VA = visual acuity.

Table 2. Data for the mean, SD and range of baseline values across all participants for the blood flow and visual function measures.

<table>
<thead>
<tr>
<th>Test</th>
<th>Baseline mean (SD)</th>
<th>Baseline range</th>
<th>post-TES Δ</th>
<th>TES: 95% CI</th>
<th>TES: p-value</th>
<th>post-EA Δ</th>
<th>EA: 95% CI</th>
<th>EA: p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRA: MFV</td>
<td>3.58 cm/second (0.73)</td>
<td>2.43 to 5.81</td>
<td>0.69</td>
<td>0.04, 1.34</td>
<td>0.038</td>
<td>1.27</td>
<td>0.54, 1.99</td>
<td>0.001</td>
</tr>
<tr>
<td>CRA: PSV</td>
<td>6.12 cm/second (1.52)</td>
<td>3.93 to 11.48</td>
<td>1.26</td>
<td>−0.04, 2.56</td>
<td>0.057</td>
<td>2.38</td>
<td>0.94, 3.82</td>
<td>0.001</td>
</tr>
<tr>
<td>CRA: EDV</td>
<td>2.31 cm/second (0.41)</td>
<td>1.58 to 3.37</td>
<td>0.40</td>
<td>0.05, 0.76</td>
<td>0.026</td>
<td>0.71</td>
<td>0.31, 1.10</td>
<td><0.001</td>
</tr>
<tr>
<td>RBF: MFV</td>
<td>13.56 mm/second (9.4)</td>
<td>3.3 to 75.82</td>
<td>55%</td>
<td>32%, 78%</td>
<td><0.001</td>
<td>34%</td>
<td>9%, 58%</td>
<td>0.008</td>
</tr>
<tr>
<td>RBF: Velocity</td>
<td>5.41 mm/second (1.74)</td>
<td>2.67 to 12.35</td>
<td>55%</td>
<td>32%, 78%</td>
<td><0.001</td>
<td>34%</td>
<td>9%, 58%</td>
<td>0.008</td>
</tr>
<tr>
<td>ETDRS VA</td>
<td>0.46 logMAR (0.47)</td>
<td>−0.09 to 1.56</td>
<td>0.09</td>
<td>0.29 to 2.93</td>
<td>0.01</td>
<td>2.93</td>
<td>0.29 to 2.93</td>
<td>0.01</td>
</tr>
<tr>
<td>Pelli-Robson CS</td>
<td>1.22 logCS (0.52)</td>
<td>0.33 to 1.93</td>
<td>0.09</td>
<td>0.29 to 2.93</td>
<td>0.01</td>
<td>2.93</td>
<td>0.29 to 2.93</td>
<td>0.01</td>
</tr>
<tr>
<td>qCSF AULCSF</td>
<td>0.69 (0.59)</td>
<td>0 to 1.93</td>
<td>0.09</td>
<td>0.29 to 2.93</td>
<td>0.01</td>
<td>2.93</td>
<td>0.29 to 2.93</td>
<td>0.01</td>
</tr>
<tr>
<td>GVF: V4e</td>
<td>1.71 log ret. area (0.72)</td>
<td>0.29 to 2.93</td>
<td>0.09</td>
<td>0.29 to 2.93</td>
<td>0.01</td>
<td>2.93</td>
<td>0.29 to 2.93</td>
<td>0.01</td>
</tr>
<tr>
<td>GVF: III4e</td>
<td>1.18 log ret. area (0.78)</td>
<td>−0.54 to 2.74</td>
<td>0.09</td>
<td>0.29 to 2.93</td>
<td>0.01</td>
<td>2.93</td>
<td>0.29 to 2.93</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Also listed are the magnitude of change (Δ) and significance levels [95% confidence intervals (CI) and p-values] for the blood flow measures post-TES and post-electro-acupuncture (post-EA) when compared to sham controls.

CRA = central retinal artery, ETDRS = Early Treatment of Diabetic Retinopathy Study, RBF = retinal blood flow, SD = standard deviation, TES = transcorneal electrical simulation, VA = visual acuity.
for the mean of the two post-treatment tests (i.e. within a week and after a month) than the mean of the two baseline tests. We utilized the qCSF test’s Bayesian method to generate full distributions of the confidence intervals for the mean AULCSF at pre- and post-treatment. An ROC value of 50% indicates no change (i.e. complete overlap of the two distributions), while a maximum ROC value of 100% indicates no overlap of the two distributions. We utilized an ROC value ≥97.5% (for the separation of the distributions) to indicate a significant improvement in the qCSF test.

Results

Data for the mean baseline outcome measures of blood flow and visual function are listed in Table 2. Figure 3 and Table 2 show the significant improvements in the retrobulbar CRA blood flow on average after two TES sessions for PSV, EDV and MFV, as well as within 1 week of electro-acupuncture for PSV, EDV and MFV when compared to sham controls. These changes in CRA blood flow were no longer significantly different from the sham control group after completing six TES sessions (all p ≥ 0.61) and a month after completing electro-acupuncture (all p ≥ 0.38). Figure 4 and Table 2 display the significant RBF improvements in MFV measured in the TES and electro-acupuncture subjects compared to the sham controls within a week after completing all six TES sessions and a month after completing electro-acupuncture. Changes in RBF for the TES and electro-acupuncture groups were not significantly different from the controls when assessed earlier at the first post-treatment visit (i.e. after just two TES sessions or within a week of completing ten electro-acupuncture sessions) (p = 0.32 and p = 0.25, respectively).

After two TES sessions, 23% of the veins (i.e. 3 of 13) measured across all TES subjects developed significantly improved RBF ≥20%. Immediately post-TES (i.e. within a week of the sixth or last session), 63% of the vein locations (i.e. 10 of 16) had significantly improved RBF compared to baseline. Fewer arterioles were measurable as they are more attenuated. After two and six TES sessions, 67% (i.e. 4 of 6) and 60% (i.e. 3 of 5) of arteries measured, respectively, developed significantly improved RBF, which is roughly equal to the proportion of vein locations with improved RBF after six TES sessions. In sham controls, only 21% (i.e. 3 of 14) of vessel locations developed improved RBF ≥20% at the same follow-up visit. Nearly half (i.e. 46%) of vessel locations developed significantly improved RBF immediately after electro-acupuncture and 41% of the vessel locations (i.e. 7 of 17) had a significant improvement in RBF a month after completing electro-acupuncture.

There was a statistically significant difference in the proportion of eyes that improved when comparing the three intervention groups (p = 0.038): four of seven TES subjects (57%), two of seven electro-acupuncture subjects (29%) and none of the seven control subjects (0%) had a significant improvement in VA, qCSF, GVF and/or AdaptDx scotopic sensitivity outside of typical test–retest variability at both (i.e. two consecutive) follow-up visits; their results are presented in Table 3. The sham control subject who was lost to follow-up at the second follow-up did not have any significant improvements in the visual function tests at the first follow-up visit.

Fig. 3. Box plot of changes from mean baseline for MFV, mean log PSV and mean EDV in the central retinal artery (CRA) of each eye according to intervention group after 2 transcorneal electrical simulation (TES) sessions or within a week of completing the acupuncture intervention for the electro-acupuncture subjects or laser acupuncture (i.e. placebo sham controls). The bottom and top of the box are the 25th and 75th percentile (i.e. the upper and lower quartiles, respectively) and the band near the middle of the box is the 50th percentile (i.e. the median). The ends of the whiskers represent the lowest datum within 1.5 times the interquartile range of the lower quartile, and the highest datum still within 1.5 times the interquartile range of the upper quartile. Any data not included between the whiskers are plotted as an outlier indicated by a dot.

Fig. 4. Box plot of per cent changes in MFV for RBF in the macular vessels according to intervention group within a week of completing six transcorneal electrical simulation (TES) sessions and a month after completing electro-acupuncture compared to baseline. Dots: data not included between the whiskers and regarded as outliers.
Figure 5 shows the changes in VA at each follow-up visit post-treatment compared to mean baseline for each of the three intervention groups. Figure 6 displays the changes in GVF with the III4e test target at each follow-up visit post-treatment compared to mean baseline for each of the three intervention groups. The significant changes in VA or GVF among those who received TES occurred in the eye with worse vision at baseline. All sham control subjects had ROC values <90% for all of the qCSF AULCSF measures. Figure 7 and Table 3 show the changes in the mean AULCSF pre-versus post-treatment for the TES and electro-acupuncture subjects with significant changes for the ROC analysis. Figure 8 and Table 3 display the changes across visits for AdaptDx sensitivity in the better eye at baseline for an electro-acupuncture subject. No subjects had a significant change outside of typical variability for Pelli-Robson CS testing at both follow-ups. No subjects had a significant visual function loss for any of the study outcomes at both follow-up visits that was outside of baseline test–retest variability. On average, neither the TES subjects nor the electro-acupuncture subjects had significantly different binocular Pelli-Robson CS or qCSF AULCSF changes from baseline over time compared to the sham controls (all p ≥ 0.48).

The mfERG P1 response amplitude for the single central hexagon in ring 1 subtending approximately 2.4 degrees was only measurable (i.e. ≥3.5 nV/deg²) in eight participants [i.e. one who received TES, two who received electro-acupuncture, and five sham controls], whereas the other subjects did not have a measurable response. When comparing the mfERG P1 amplitude ratio from post-treatment (i.e. within 1 week of the last treatment session) to baseline, we found a mean difference in ratio of 1.63 across both eyes for one of the TES subjects (ID #2 in Table 3, who also had significant improvements in VA, qCSF and GVF) when compared to the five sham controls with a measurable mfERG response for ring 1 (p = 0.01). For this TES subject, the mfERG P1 response amplitudes for ring 1 in the worse seeing eye at baseline and post-treatment were 3.5 nV/deg² and 12.5 nV/deg², respectively. We found no significant difference in the mfERG P1 amplitude ratio post-treatment from Table 3.

Table 3. Data for participants who had a significant improvement in visual function (i.e. change (D) outside of test–retest variability listed in Table 1 or qCSF ROC value ≥97.5%) at both post-treatment (post-tx) assessments following TES or electro-acupuncture (EA).

<table>
<thead>
<tr>
<th>ID</th>
<th>Age</th>
<th>Onset</th>
<th>nyctalopia</th>
<th>Onset</th>
<th>VF loss</th>
<th>Gender</th>
<th>Race</th>
<th>Genetic</th>
<th>Intervention</th>
<th>Eye (s)</th>
<th>Test Baseline</th>
<th>Δ Post-tx</th>
<th>Δ Post-tx 1</th>
<th>Δ Post-tx 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
<td>13</td>
<td>8</td>
<td>F</td>
<td>Caucasian</td>
<td>AD</td>
<td>TES</td>
<td>OS</td>
<td>logMAR VA 1.53</td>
<td>0.41</td>
<td>1.01</td>
<td>0.41</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td>2</td>
<td>47</td>
<td>16</td>
<td>24</td>
<td>M</td>
<td>Black</td>
<td>AR</td>
<td>TES</td>
<td>OS</td>
<td>GVF: V4e 0.71</td>
<td>0.31</td>
<td>(104%)</td>
<td>0.33</td>
<td>(114%)</td>
<td>0.33</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>Birth</td>
<td>Birth</td>
<td>F</td>
<td>Asian Indian</td>
<td>AR</td>
<td>TES</td>
<td>OD</td>
<td>qCSF AULCSF 0.02</td>
<td>0.12</td>
<td>(97.5% ROC)</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>4</td>
<td>25</td>
<td>M</td>
<td>Hispanic</td>
<td>AR</td>
<td>TES</td>
<td>OD</td>
<td>qCSF AULCSF 0.03</td>
<td>0.26</td>
<td>(82.2%)</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>5</td>
<td>46</td>
<td>Birth</td>
<td>Birth</td>
<td>M</td>
<td>Caucasian</td>
<td>AR</td>
<td>TES</td>
<td>OD</td>
<td>qCSF AULCSF 0.04</td>
<td>0.28</td>
<td>(235.8%)</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>6</td>
<td>58</td>
<td>Birth</td>
<td>Birth</td>
<td>M</td>
<td>Hispanic</td>
<td>AR</td>
<td>EA</td>
<td>OD</td>
<td>qCSF AULCSF 0.68</td>
<td>0.28</td>
<td>(99.9% ROC)</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>7</td>
<td>67</td>
<td>16</td>
<td>Birth</td>
<td>M</td>
<td>Hispanic</td>
<td>AR</td>
<td>EA</td>
<td>OD</td>
<td>qCSF AULCSF 0.67</td>
<td>0.26</td>
<td>(99.9% ROC)</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Also listed are these participants’ characteristics, such as age, sex, self-reported onset age of initial symptoms of nyctalopia or night vision loss in years, self-reported onset age of initial indications of visual field loss in years, and self-reported onset age of initial features or indications of retinal degeneration (i.e. GDH = genetic degenerative histopathology, ID = inner nuclear degeneration, AD = autosomal dominant, AR = autosomal recessive).

ROC = receiver operator characteristic, TES = transcorneal electrical simulation.
baseline for the two electro-acupuncture subjects compared to the five sham controls ($p = 0.77$).

There were no adverse events among the study participants, and no evidence of corneal superficial punctate keratoconjunctivitis or conjunctival irritation post-TES administration. Inadvertently, four TES subjects, each during only one of the six sessions, received a small, brief electrical shock when there was a loss of connection with the ground electrode on the temple ($n = 3$), and in one instance during which the DTL electrode lost contact with the cornea and was reapplied. Other than discomfort at the moment of the shock, there were no other related issues. Cystoid changes within the foveal region at baseline were detected with OCT in only three eyes of two subjects who were randomized to the sham control group. We found no gross changes in the appearance or magnitude of these cystoid changes during the study period; thus, they did not appear to influence changes in central visual function.

Discussion

The present RCT provides evidence of a plausible mechanism (i.e. enhanced blood flow to and within the retinal vessels) that may be associated with or collateral to visual function improvements following electro-acupuncture or TES. In addition, findings of several previous basic science studies support the hypothesis that TES might induce a beneficial, neuroprotective effect by creating a nurturing microenvironment for the retina via several other possible mechanisms: neurotrophic, anti-apoptotic, anti-glutamatergic and anti-inflammatory (Selic et al. 2016), which may influence visual function improvements. In the present RCT, we measured MFV in the CRA and RBF in the macular capillaries as objective outcomes to help support the improvements noted with subjective visual function test results. Not only do these objective measures of blood flow indicate that physiological changes occur following electro-stimulation therapies in a diverse group of RP patients, but they are especially valuable as other objective measures (e.g. mfERG) are essentially extinguished and non-measurable in the majority of RP patients.

Our trial of electro-stimulation therapies provides evidence that blood flow to the retrobulbar aspect of the eye is recruited first, followed by enhanced blood flow in the macular arterioles and venules. Perhaps this occurred due to blood flow autoregulation processes in the CRA, which are independent of blood flow regulation in the macular capillaries that is influenced by the metabolic needs of the retina (Kornfield & Newman 2014). Then visual improvements developed in some patients during the timeframe of the blood flow improvements and in the weeks to follow. Thus, there appears to be a tendency for a time lag for VA and VF improvements post-TES, which were greater at 1-month post-treatment than within a week of completing six sessions; this outcome is in agreement with the previous finding of slightly delayed VF improvements post-TES measured by another group (Schatz et al. 2011).

The current results of improved blood flow to the optic nerve after two TES sessions and subsequently improved blood flow in retinal vessels after six TES sessions is supported by previous studies of TES in cats (Mishashi et al. 2011; Morimoto et al. 2014), in which intrinsic signals of stimulation occurred first at the optic disc, suggesting an increase in blood flow or volume, followed by slightly delayed effects that subsequently reached the retinal arteries, and lastly the retinal veins. The slow increase in RBF in our RCT and the sustained chorioretinal blood flow increase found in a previous study of a single session of TES administered to normals without RP (Kurimoto et al. 2010) suggests that
such changes are likely mediated by molecular changes in the ocular or retinal tissues rather than neural mediation. Previous studies of TES have found upregulation of insulin growth factor-1 (IGF-1) in activated retinal Müller cells, which may induce vasodilation and therefore has been hypothesized to be responsible for improved RBF following TES (Kurimoto et al. 2010).

The finding of improved RBF for a majority but not all locations at which RBF was measured is not unexpected given that regional variations in RBF and oxygenation may occur in RP, as is the case in normals and in diabetic retinopathy (Jørgensen & Bek 2017), and increased RBF is correlated with changes in oxygenation (Palkovits et al. 2014). The safety of TES is supported by lack of adverse events and of significant reductions in RBF outside of typical test–retest variability post-intervention. If the RBF measures were just fluctuating across visits, one would find a similar number of decreases and increases in RBF post-TES, which was not documented in our trial.

Although we had anticipated that subjects with significantly larger improvements in RBF might be more likely to develop improvements in visual function after either treatment, we did not find support for this hypothesis; RBF was significantly improved on average across all subjects who received electro-stimulation therapy, regardless of whether they subsequently developed a measurable significant visual improvement. For the participants who did not have a measurable improvement in vision during this short trial, several basic science research studies suggest that it may still be possible for these therapies to reduce the progression rate of RP long term (Sehic et al. 2016), which will need to be confirmed in future RCTs. A limitation of the present RCT and most clinical trials involving people with RP was that the progression rate of RP for each participant was not formally quantified as they were not evaluated longitudinally and systematically using consistent visual function measures prior to joining the study. Therefore, it is currently unknown whether the efficacy of electro-stimulation therapies might be related to RP progression rate, which could be elucidated in a future RCT of longitudinally administered treatment to one eye with the fellow eye as a sham control.

In the RCS rat model of RP, TES prolonged photoreceptor survival and retinal function (Morimoto et al. 2007), which was also found when TES was used to treat a rhodopsin transgenic rabbit model (Morimoto et al. 2012). In transgenic rats with a P23H-1 rhodopsin mutation, whole-eye electrical stimulation preserved ganglion cells, inner retinal function and VA in one study (Hamif et al. 2016), while TES preserved photoreceptor function in another study involving rats with the same P23H-1 mutation (Rahmani et al. 2013). These effects in animal models with different mutation types or stimulation levels support the finding that TES may not be equally effective for all RP mutations. Furthermore, another study of TES in rats that underwent optic nerve crush found a subgroup of ‘responder animals’ that exhibited long-term benefits; however, reasons to account for the responder effects were not elucidated (Henrich-Noack et al. 2013). This group hypothesized that perhaps TES might induce greater survival benefits for neuronal axons in animals with milder lesions.

It appears that there may be differences in which aspects of visual function are affected by either TES or electro-acupuncture, with improvements in scotopic visual function or CS, rather than VA or VF, more likely among RP subjects who received electro-acupuncture, which was also found.
in our previous case-series study (Bit-
tner et al. 2014). On the other hand, a
recent study of acupuncture in 14
patients with inherited retinal degener-
ation found significant improvements
in VA, contrast vision and temporal
GVF radius (Blechschmidt et al. 2016);
perhaps, different acupuncture proto-
cols may affect different aspects of
visual function, or the heterogeneity of
RP and/or other patient factors
affect responses across individuals.
Our RCT found central visual
improvements in VA and CS following
TES, which is supported by a study of
TES in mice with an induced form of
RP that showed greater preservation
of the central than of the peripheral
photoreceptors (Tao et al. 2016). Another
previous small-scale RCT of TES in
RP patients indicated significant
preservation of VA but did not mea-
sure VFs (Robles-Camarillo et al.
2013), while another group reported a
significant improvement in peripheral
VF area but not VA (Schatz et al.
2011); therefore, a larger scale RCT
conducted over several years including
several aspects of visual function and
genotyping is needed to elucidate the
effects as RP is a heterogeneous dis-
ease. The present trial attempted to
reduce the risk that chance could have
accounted for a significant improve-
ment outside typical test variability for
visual function by utilizing a strict
criteria of improvement at two consec-
utive follow-up visits; however, appropri-
ately powered larger scale trials are
still needed before these interventions
may be recommended clinically.
Multiple pathways are critical to
help maintain visual and retinal func-
tion in RP, including control of RBF,
tissue oxygenation and metabolic sup-
port. Future longitudinal trials should
evaluate the efficacy of retreatments
with TES for maintaining RBF and
oxygenation, as well as the possibility
to reduce the rate of visual function
loss in RP when applied longer term.
Clinical studies should also work to
optimize the dose (i.e. duration, fre-
quency, stimulation level) for electro-
stimulation therapies for RP. As it is
hypothesized that these therapies may
create a more nurturing and supportive
retinal microenvironment, perhaps
they may also serve as an adjunctive
approach to potentiate the effects of
other emerging treatments for RP, such
as retinal progenitor cells, which would
also require future studies.

References
Asejczyk-Widlicka M, Krzyzanowska-Ber-
kowska P, Sander BP & Iskander DR
(2015): Age-related changes in ocular blood
velocity in suspects with glaucomatous optic
disc appearance. Comparison with healthy subjects and glaucoma patients. PLoS One 10:
e0134357.
Barry MP, Bittner AK, Yang L, Marcus R,
Ifikhar MH & Dagnelie G (2016): Variabil-
ity and errors of manually digitized gold-
mann visual fields. Optom Vis Sci 93:
720–730.
Bittner AK, Ifikhar MH & Dagnelie G (2011):
Test-retest, within-visit variability of Gold-
mann visual fields in retinitis pigmentosa.
Bittner AK, Gould JM, Rosenfarb A, Rozan-
ski C & Dagnelie G (2014): A pilot study of
an acupuncture protocol to improve visual
function in retinitis pigmentosa patients.
Blechschmidt T, Krumsieck M & Todorova
MG (2016): Improvement in visual function in
Dabov S, Gourotoran G, Ivanova R & Pet-
kova N (1985): Clinical application of
acupuncture in ophthalmology. Acupunct
Duncan DD, Lemaitre P, Ibrahim M, Nguyen
QE, Hille M & Ramella-Roman JC (2010):
Absolute blood velocity measured with a
modified fundus camera. J Biomed Opt 15:
056014.
Hamf AM, Kim MK, Thomas JG et al.
(2016): Whole-eye electrical stimulation
therapy preserves visual function and struc-
ture in P23H-1 rats. Eye Exp Eye Res 149:
75–83.
Henrich-Noack P, Voigt N, Prilloff S, Fedor-
ov A & Sabel BA (2013): Transcorneal electri-
cal acupuncture stimulation is related to
impaired central visual function in royal college of
neural electrical stimulation promotes survival of photoreceptors and
preserves retinal function in experimental animals. Invest Ophthalmol Vis Sci 42:
4752–4767.
Kaysor S, Vargas P, Mendelsohn D, Han J, Bi
H, Benavente A & Bittner AK (2017):
Reduced central retinal artery blood flow is
related to impaired central visual function in
retinitis pigmentosa patients. Curr Eye Res
[E-pub ahead of print].
Kiser AK & Dagnelie G (2008): Reported
effects of non-traditional treatments and
complementary and alternative medicine
(CAM) by retinitis pigmentosa (rp) patients.
Kiser AK, Mladenovich D, Eshraghi F, Bour-
deau D & Dagnelie G (2005): Reliability and
consistency of visual acuity and contrast
sensitivity measures in advanced eye disease.
Optom Vis Sci 82: 946–954.
Kornfield TE & Newman EA (2014): Regulation
of blood flow in the retinal trilaminar vascular
Kurimoto T, Ono S, Oku H et al. (2010):
Transcorneal electrical stimulation increases
Lemaitre P, Duncan DD, Lompa A, Ibrahim M, Nguyen QD & Ramella-Roman
JC (2010): Retinal spectral imaging and
blood flow imaging. J Inov Opt Health Sci
Li G, Cheung RT, Ma QY & Yang ES (2003):
Visual cortical activations on fMRI upon stimula-
tion of the vision-impaired acu-
Li L, Qin W, Bai L & Tian J (2010): Exploring
vision-related acupuncture point specificity with multivoxel pattern analysis. Magn
Litscher G (2002): Computer-based quantifi-
cation of traditional chinese-, ear- and
Korean hand acupuncture: needle-induced changes of regional cerebral blood flow
Mihashi T, Okawa Y, Miyoshi T, Kitaguchi Y,
Hirohara Y & Fujikado T (2011): Comparing
retinal reflectance changes elicited by transcorneal electrical retinal stimulation with those of optic chiasma stimulation in
Morimoto T, Fuku T, Matsushita K, Okawa
Y, Shimoyio H, Kusaka S, Tano Y &
retinal function by pupillary constrictions
and phosphesns using transcorneal electrical
stimulation in patients with retinal degener-
244: 1283–1292.
Morimoto T, Fujikado T, Choi JS et al.
(2007): Transcorneal electrical stimulation
promotes the survival of photoreceptors and
preserves retinal function in royal college of
surgeons rats. Invest Ophthalmol Vis Sci
48: 4725–4732.
Morimoto T, Kanda H, Kondo M, Terasaki H,
Nishida K & Fujikado T (2012): Transcor-
neal electrical stimulation promotes survival
of photoreceptors and improves retinal
function in rhodopsin P347L transgenic
Morimoto T, Kanda H, Miyoshi T et al. (2014):
Characteristics of retinal reflectance changes

Received on February 9th, 2017. Accepted on August 5th, 2017.