Virtual Wayfinding Using Simulated Prosthetic Vision in Gaze-locked Viewing

Lin Wang, PhD, Liancheng Yang, MS, and Gislin Dagnelie, PhD
Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland

Abstract

Purpose—To assess virtual maze navigation performance with simulated prosthetic vision in gaze-locked viewing, under the conditions of varying luminance contrast, background noise, and phosphene dropout.

Methods—Four normally sighted subjects performed virtual maze navigation using simulated prosthetic vision in gaze-locked viewing, under five conditions of luminance contrast, background noise, and phosphene dropout. Navigation performance was measured as the time required to traverse a 10-room maze using a game controller, and the number of errors made during the trip.

Results—Navigation performance time 1) became stable after 6-10 trials, 2) remained similar on average at luminance contrast of 68% and 16% but had greater variation at 16%, 3) was not significantly affected by background noise, and 4) increased by 40% when 30% of phosphenes were removed. Navigation performance time and number of errors were significantly and positively correlated.

Conclusion—Assuming that the simulated gaze-locked viewing conditions are extended to implant wearers, such prosthetic vision can be helpful for wayfinding in simple mobility tasks, though phosphene dropout may interfere with performance.

Keywords

low vision; low vision rehabilitation; prosthetic vision; retinal prosthesis; simulation; wayfinding; mobility; orientation

In recent years, retinal prostheses have been developed in an effort to restore some functional vision in those who have outer retinal blindness.1-3 Retinal prostheses in the near future will likely remain limited to a small number of electrodes (<100) with diameters of 100-500 μm and spacing of 300-800 μm.4-6 The electrode size and spacing determine that the spatial resolution of early prosthetic vision will be much lower than normal vision, on the order of 20/2000 at best. A question thus arises: Even if each electrode elicits a distinct phosphene, can such low-resolution vision be useful in orientation and mobility? Studies have been done to estimate minimum requirements for the resolution of prosthetic vision to perform mobility tasks.7-10

Our laboratory previously investigated wayfinding performance of normally sighted subjects in simulated prosthetic vision of 6×10 phosphenes covering a visual field of 27°×16.2°.10 The quality of simulated prosthetic vision in that study was manipulated with three parameters, luminance contrast, visual background noise, and phosphene dropout. Those three parameters...
have been reported to play a central role in prosthetic vision.4,11-13 Luminance contrast is important for image quality and is affected by pulse duration and charge density.14 The sensation of spark-like background noise is often reported by patients with late-stage retinitis pigmentosa.15,16 Phosphenes dropout in the pixelized image of prosthetic vision can be a result of malfunctioning electrodes or an unresponsive retinal patch underneath the electrode array. In our previous study, subjects traversed a 10-room virtual maze with simulated prosthetic vision by operating a game controller that simulates the subject's movement. The prosthetic vision was simulated as the image taken by a body-mounted camera (Fig. 1). Wayfinding performance was measured by the time the subject took to traverse the maze and the number of errors made during travel. It was found that background noise did not significantly interfere with task performance. However, performance deteriorated with phosphenes dropout. Subjects' task performance improved through practice.

In that study the pixelized image was not anchored to a particular retinal location, and consequently, the image could be scanned using eye movements. We refer to such a simulation of prosthetic vision as \textit{free viewing}, which is different from the technology currently under clinical testing.2-3,17 In the current technology, an electrode array is fixed at a certain retinal location. Consequently, the pixelized image, captured by a head/body-mounted camera, is always viewed through the same retinal area and does not respond to a shift in eye position unless special provisions such as eye tracking are built into the system. We refer to the simulation of such prosthetic vision as \textit{gaze-locked viewing}. Though our research established that vision provided by a low-resolution retinal prosthesis could be useful for wayfinding in certain environments when using free viewing, it is yet to be known whether this would still be the case for gaze-locked viewing. In the present study, we investigated wayfinding performance using gaze-locked viewing under conditions otherwise similar to those in our previous study.10

\section*{METHODS}

\subsection*{Subjects}
Four subjects (Ss) (2 males and 2 females), who had 20/30 or better visual acuity with no or best correction and were between 20 and 50 years of age, participated in the present study. Ss had participated in our previous study and had extensive experience with the performance of the maze navigation task in the free viewing condition. They were therefore familiar with the pixelized image and the maze navigation task.

The study was designed in accordance with the tenets of the Declaration of Helsinki and was approved by the Institutional Review Board of the Johns Hopkins University School of Medicine. Informed consent was obtained from each S after explanation of the nature and possible consequences of the study. Ss received a lunch coupon and 10 USD for each one-hour test session.

\subsection*{Retinal Prosthesis Simulation}
Prosthetic vision was simulated in a monocular video visor as a grid of 6x10 phosphenes, visible only to the left eye. The phosphene grid spanned 27° x 16.2°. Each phosphene had a circular Gaussian luminance profile against a dark background with a standard deviation of 0.7° (Fig. 2-A). Pixel luminance ranged from 0 (darkest) to 255 (brightest). Peak luminance of any phosphene was obtained as follows:

\[\text{Peak luminance} = (\text{LSL/MSL}) \times \text{PLR+PBL} \]
Where LSL is the mean luminance across the scene area subtended by the phosphene, MSL is the maximum luminance in the scene, PLR is the phosphene luminance range, and PBL is the phosphene background luminance.

Three parameters were manipulated: Rayleigh luminance contrast (Contrast) defined as PLR/(PLR+PBL), background noise (Noise), and phosphene dropout (Dropout). Based on observations of brightness resolution in a clinical study, we chose a phosphene luminance scale of 8 gray levels. Background noise was created by adding randomly-scattered “sparks” to the pixelized image (Fig. 2-B) such that five bright dots were added into each video frame and then began to fade in brightness with an exponential decay and a half life of 10 video frames, simulating the photopsias often reported by patients with retinal blindness. Phosphene dropout was created by randomly selecting 30% of the phosphenes in the pixelized image (Fig. 2-C) and setting their brightness to the PBL level, simulating the condition of a retinal prosthesis with some malfunctioning electrodes and/or unresponsive patches of retina. Fig. 2-D shows a simulation combining background noise and phosphene dropout. A pupil-imaging camera and infrared illumination built into the visor in conjunction with ViewPoint eye tracking software (Arrington Research Inc, Scottsdale, AZ) allowed tracking gaze position at 30 Hz. One concern about eye tracking at 30 Hz was that it might delay updating of the eye position during large saccades, causing the image that was projected on the retina to “slip.” We monitored saccade occurrence during task performance and observed few large saccades. We thus concluded that the phosphene grid was effectively gaze-locked on the retina during the experiment. Though the precision of this gaze-locking fell short of stabilized vision in both space and time, the spatial precision was well within the size of an electrode and therefore the net result was that subjects kept their gaze steady within a 1° window. The retinal prosthesis was simulated as being implanted over the macula. Subjects navigated scenes in pixelized imagery by operating a game controller simulating the subject's movement with a body-mounted camera.

Virtual Maze

The virtual mazes used in the present study were the same as those in our previous study. The ten 10-room mazes, each having a different floor plan, were simulated in virtual reality using Worldcraft freeware (http://www.fileplanet.com/) and could be traversed using a game controller and the HalfLife gaming engine (Valve Corporation, Bellevue, WA). The rooms were empty and numerically labeled on one of the walls with 1 (Entrance) through 10 (Exit) as shown in Fig. 3. Room labels were not visible from outside of the room. The only correct route was to traverse the maze through Room 1 to 10 in order. The maze was shown to subjects only as a pixelized image. Fig. 4 shows a portion of the scene of Fig. 3 in pixelized form.

Experimental Design and Procedure

Maze navigation performance was measured with two variables: Time (in seconds) the subject took to traverse a maze (Time) and number of errors the subject made during the trip (Errors). An error was defined as the subject's return to a previous room. A trial was defined as a complete trip navigating from Room 1 to Room 10.

The experiment was designed to assess maze navigation performance using gaze-locked viewing under 5 conditions. Effects of Contrast, Noise, and Dropout were investigated and described in detail in the Results section. The experiment was divided into 5 blocks as shown in Table 1. Each block had one distinct experimental condition. The block order was arranged to be consistent with that in our previous study. All subjects participated in all 5 blocks in the same order.
Subjects were tested in a one-hour session per week, performing as many trials as time permitted. No two consecutive trials used the same maze. For each trial, the subject was instructed to traverse Room 1 through Room 10 in minimum time.

Data Collection and Analysis

Time was recorded by the experimenter using a stop watch and Errors through observation. To reduce heteroscedasticity, a logarithmic transformation was applied to Time and a square-root transformation to Errors for statistical analysis. Transformed data were analyzed using SAS (SAS institute Inc, Cary, NC) as described in the Results section.

Results

Relationship between Performance Time and Errors

We first examined the correlation between log(Time) and sqrt(Errors) across all conditions. It was found that log(Time) and sqrt(Errors) were positively correlated, with Pearson correlation coefficient ranging from 0.72 to 0.84 across Ss (Table 2). Because of this high correlation between log(Time) and sqrt(Errors), we will present only timing results, as log(Time). Results for sqrt(Errors) were statistically equivalent to those for log(Time).

Adaptation to Gaze-locked Viewing

Ss first performed the maze navigation in gaze-locked viewing under the condition of high contrast, no noise, and no dropout (Block 1). Block 1 was designed to have 20 trials, with the first half of Block 1 serving as practice for Ss to adapt to the gaze-locked viewing condition. Three subjects, S12, S31, S20, performed all 20 trials. Linear regression of log(Time) on trial for the second half of Block 1 revealed that the slope of the regression line for each of the three subjects was not significantly different from 0, showing that task performance was close to an asymptote after about 10 trials. After S23 had performed 11 trials in Block 1, we found that S23 showed similar performance stability in trials 6-11 as the other subjects in trials 11-20 (Table 3, columns under Second Half). We therefore decided to include S23’s abbreviated data in the analysis. To examine performance improvement in the first half of Block 1, we conducted the linear regression of log(Time) on trial for the first half of Block 1, and found that the slopes of the linear regression for all subjects were negative but not significantly different from zero (Table 3, columns under First Half). We then conducted a one-way (2) repeated measures analysis of variance on log(Time), to examine if there was a substantial decrease in mean log (Time) from the first half of Block 1 to the second half. The result showed that, across all subjects, the mean log(Time) in the second half was significantly less than that in the first half ($F(1, 3) =12.47, p<0.05$). Fig. 5 shows the mean and standard deviation of log(Time) in the first and second half of Block 1 for each S. In order for the reader to have an appreciation of the adaptation process, Fig. 6 shows both Time (Panel A) and log(Time) (Panel B) as a function of trial number in Block 1.

In between Block 1 and 2, Ss were given 8-9 practice trials using low contrast. We examined log(Time) in blocks 2-5 for evidence of performance improvement over trials by performing the linear regression of log(Time) on trial number within each block. As shown in Table 4, no slopes of the linear regression were found to be significantly different from zero in any block for any S. We therefore concluded that Ss’ adaptation to gaze-locked viewing was essentially complete by the end of Block 1.

Contrast, Noise, and Dropout Effects

Data in the second half of Block 1 (high contrast) and data collected in Block 2 (low contrast) were analyzed to assess the effect of Contrast on task performance. Ss performed the task for
12-13 trials in Block 2 (see Table 1). We conducted a one-way (2) repeated measures analysis of variance on log(Time). Contrast had two levels, high (68%) vs. low (16%) contrast. The analysis revealed no significant difference in mean log(Time) between the two contrast levels ($F(1, 3) = 0.09, p > 0.05$). However, the variation, i.e., standard deviation of log(Time), was greater in the condition of low contrast across all subjects (Table 5).

The effects of Noise and Dropout on task performance were assessed at low contrast. Data collected in Blocks 2-5 were subject to the analysis. Ss performed the task for 10-13 trials in Blocks 3-5. We conducted a two-way (2x2) repeated measures analysis of variance on log(Time) to assess effects of Noise, Dropout, and interaction between Noise and Dropout. We found a main effect of Dropout on log(Time) ($F(1, 3) = 16.16, p < 0.05$), but no significant effect of Noise ($F(1, 3) = 2.28, p > 0.05$) or interaction between Dropout and Noise ($F(1, 3) = 0.23, p > 0.05$). Fig. 7 shows mean log(Time) as a function of Noise and Dropout for each subject.

Discussion

Our results demonstrate that virtual maze navigation can be performed with simulated prosthetic vision in gaze-locked viewing, suggesting that a 6×10 electrode retinal prosthesis with low spatial resolution may be useful for certain wayfinding tasks, for example, identifying landmarks from a distance which cannot be performed with other mobility aids such as a cane. Mobility maneuvers involving obstacle detection, such as walking up and down the stairs, are unlikely to benefit from the low-level vision presented to our subjects. However, the combination of such a device with traditional mobility aids may confer appreciable benefits to a functionally sightless individual.

In the present study, we manipulated three variables; luminance contrast, background noise, and phosphene dropout. Those three variables are all associated with the retinal condition and device parameters with which a retinal prosthesis wearer has to contend. Our found that phosphene dropout could have a major impact on wayfinding. On average, a dropout of 30% of the phosphenes increased performance time by about 40%. However, wayfinding was not significantly affected by noise, at least after adequate practice. Our findings are in agreement with our previous observations under free-viewing conditions.10 Taken together, these results suggest that human vision is capable of adapting to visual conditions resembling the degenerating retina. On the other hand, the configurations of phosphene grids in our study are a simplification of what a prosthesis wearer may experience. For example, the wearer might perceive phosphenes of various sizes and shapes, in a layout less regular than the spatial configuration of the electrode array. The magnitude of such variations and distortions is yet to be known once data from implant wearers become available. In addition, further changes in the patient's vision condition may occur after a retinal prosthesis is implanted. Technical adjustment of the device and the wearer's adaptation to new conditions may be needed throughout the life span of the implant. Prospective retinal prosthesis wearers are likely to be up to such challenges because they have experienced gradual and progressive vision loss and such experiences may help them better adapt to new visual conditions than our normally sighted subjects.

The virtual maze used in this experiment was intended to be a tool for evaluation of functional vision using a simulated retinal prosthesis. It represents a greatly simplified environment that may be rarely seen in real life. Future prosthesis wearers would have to deal with far more complex environments than this virtual maze. The present study can be seen as the first step toward comprehensive simulation of real-life environments. In future research, one can explore effective approaches to transferring prosthesis wearers' mobility skills from simpler to more complex environments.
Performance improvement through practice has been reported in several studies of simulated prosthetic vision.10, 18-23 In our experiment, rapid adaptation to a new viewing condition was observed. This may be attributed to Ss’ prior experience with both simulated prosthetic vision and virtual maze navigation. It may take longer for a naïve normally-sighted subject to adapt to a viewing condition with this degree of difficulty. Therefore, our results on adaptation may have limited relevance to scenarios more complex than that in the present study. All Ss performed the maze navigation task in the same order of conditions (Table 1). We examined the possible effects of practice over the trials within each condition and did not find significant practice effects. However, the design of the study does not allow us to tease apart order and practice effects across experimental conditions from the effects of interest. This issue can only be addressed with an experimental design of counter-balanced conditions.

ACKNOWLEDGMENTS

This research was supported by NIH Grants EY07143-11 (LW) and EY12843 (GD). The authors thank Sunny Sahajwani for his assistance in conducting the experiments.

REFERENCES

Figure 1.
Video headset through which pixelized scene as shown in the computer monitor (in background) was seen. A color version of this figure is available online at www.optvissci.com.
Figure 2.
Pixelized image with (A) no background noise and 0% phosphene dropout, (B) background noise and 0% phosphene dropout, (C) no background noise and 30% phosphene dropout, and (D) background noise and 30% phosphene dropout.
Figure 3.
The entrance (Room 1) and exit (Room 10) in the virtual maze.
Figure 4.
Portions of room images from Fig. 3 seen through the simulated phosphene array.
Figure 5.
Mean log(Time) of maze navigation performance in the first and second half of Block 1 for each S. The error bar represents standard deviation.
Figure 6.
Maze navigation performance across trials in Block 1 for each S. Values along the ordinate are shown in Panel A as Time, in Panel B as log(Time).
Figure 7.
Mean log(Time) of maze navigation performance under conditions of low contrast combined with noise and/or dropout. Error bars represent standard deviation.
COPYRIGHT ASSIGNMENT

The American Academy of Optometry (the "Owner") will be pleased to publish your article (the "Work") in its periodical, Optometry and Vision Science. When and if the Work is accepted for publication, pursuant to the following terms:

1. The undersigned author(s) (E the Author(s)) or whom the Work is a "work made for hire" for an employer (E the Employer), the Employer, hereby grants and assigns to the Owner, its successors and assigns all rights in the Work of any kind, including those protected by the copyright laws of the United States or any foreign country.

2. Author or, if applicable, the Employer, warrants that his/her contribution is original; he/she has full power to make this grant; the Work contains no obnoxious or otherwise matter, and other than the Work has not been previously published or, if published here previously published, permission has been obtained for publication in the periodical and he/she will obtain copy of the permission release and language for credit line with his/her manuscript.

3. The Author shall have the right to revise, adapt, prepare derivative works, present orally, or distribute the Work, provided that such use is for the personal non-commercial benefit of the Author, is consistent with any prior commercial use, is any, between the Author and his/her employer, and is a condition of copyright is given.

4. Where the Work is a "work made for hire," the Employer (whose authorized agent must sign below) shall have the right to revise, adapt, prepare derivative works, publish, reprint, reproduce, and distribute the Work provided that all such use is for the promotion of the business enterprise, does not employ the Owner's or Publisher's identification, and lawful notice of copyright is given.

5. The Owner may grant third party permission to copy all or part of the Work. If such permission is given, the Owner may, at its option and as a matter of courtesy, advise the Author or Employer of such permission.

6. Neither Author nor Employer will receive any royalty or other monetary compensation from the Owner or the Publisher for the rights transferred by this Agreement.

This Agreement must be signed by all authors or, in the case of a "work made for hire," by an authorized agent of the employer. If all or part of the Work was prepared under a contract with the U.S. Government, state contract number ______.

[Signature] [Date]
Author's Signature

[Signature] [Date]
Author's Signature

STATEMENT CONCERNING WORK OF THE U.S. GOVERNMENT

This is to certify that the Work was written by an officer or employee of the U.S. Government as part of his/her official duties, and therefore, it is not subject to U.S. copyright. This statement must be signed by an authorized Government agency representative and by all authors who are officers or employees of the U.S. Government and who prepared all or part of the Work as part of his/her official duties.

[Signature] [Date]
Author's Signature

[Signature] [Date]
Author's Signature

AGENCY

[Signature] [Date]
By: Title Date
Table 1

The Experimental Execution Plan.

<table>
<thead>
<tr>
<th>Block #</th>
<th>Condition</th>
<th>Number of Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contrast</td>
<td>Dropout</td>
</tr>
<tr>
<td>1</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Low</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 2

Correlation (r) between log(Time) and sqrt(Errors).

<table>
<thead>
<tr>
<th>Subject</th>
<th>r</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>S20</td>
<td>0.77</td>
<td>60</td>
</tr>
<tr>
<td>S31</td>
<td>0.72</td>
<td>61</td>
</tr>
<tr>
<td>S23</td>
<td>0.84</td>
<td>51</td>
</tr>
<tr>
<td>S12</td>
<td>0.73</td>
<td>58</td>
</tr>
</tbody>
</table>
Table 3
Linear Regression of log(Time) on Trial over the First and Second Half of Block 1.

<table>
<thead>
<tr>
<th>Subject</th>
<th>First Half</th>
<th>Second Half</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log(Time) = log(T₀) + m*Trial</td>
<td>H₀: m = 0</td>
</tr>
<tr>
<td>S12</td>
<td>3.07 – 0.019 * Trial</td>
<td>t = 1.07, p > 0.05</td>
</tr>
<tr>
<td>S31</td>
<td>2.67 – 0.027 * Trial</td>
<td>t = 1.02, p > 0.05</td>
</tr>
<tr>
<td>S23</td>
<td>3.41 – 0.095 * Trial</td>
<td>t = 1.61, p > 0.05</td>
</tr>
<tr>
<td>S20</td>
<td>2.84 - 0.013 * Trial</td>
<td>t = -0.48, p > 0.05</td>
</tr>
</tbody>
</table>
Table 4
Slopes of Linear Regression of log(Time) on Trial in Condition Combinations of Low Contrast with Noise and Dropout.

<table>
<thead>
<tr>
<th>Subject</th>
<th>No noise No dropout</th>
<th>Noise No dropout</th>
<th>No noise Dropout</th>
<th>Noise Dropout</th>
</tr>
</thead>
<tbody>
<tr>
<td>S12</td>
<td>m = -0.004, t = -0.13, p > 0.05</td>
<td>m = 0.011, t = 0.37, p > 0.05</td>
<td>m = -0.035, t = -1.30, p > 0.05</td>
<td>m = -0.035, t = -1.24, p > 0.05</td>
</tr>
<tr>
<td>S31</td>
<td>m = 0.019, t = 1.13, p > 0.05</td>
<td>m = 0.009, t = 0.39, p > 0.05</td>
<td>m = 0.011, t = 0.53, p > 0.05</td>
<td>m = 0.011, t = 0.64, p > 0.05</td>
</tr>
<tr>
<td>S23</td>
<td>m = 0.022, t = 1.09, p > 0.05</td>
<td>m = 0.017, t = 0.71, p > 0.05</td>
<td>m = 0.003, t = 0.13, p > 0.05</td>
<td>m = 0.001, t = -0.07, p > 0.05</td>
</tr>
<tr>
<td>S20</td>
<td>m = -0.017, t = -0.58, p > 0.05</td>
<td>m = 0.006, t = 0.32, p > 0.05</td>
<td>m = 0.016, t = 0.84, p > 0.05</td>
<td>m = -0.011, t = -0.59, p > 0.05</td>
</tr>
</tbody>
</table>

The linear regression equation is log(Time) = log(T_0) + m * Trial, with the null hypothesis H₀: m = 0.
Table 5
Mean log(Time) in High and Low Contrast Conditions.

<table>
<thead>
<tr>
<th>Subject</th>
<th>High Contrast</th>
<th>Low Contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log(Time)</td>
<td>CV (%)</td>
</tr>
<tr>
<td>S12</td>
<td>2.76±0.15</td>
<td>5.49</td>
</tr>
<tr>
<td>S31</td>
<td>2.36±0.09</td>
<td>3.74</td>
</tr>
<tr>
<td>S23</td>
<td>2.62±0.08</td>
<td>2.88</td>
</tr>
<tr>
<td>S20</td>
<td>2.60±0.15</td>
<td>5.81</td>
</tr>
</tbody>
</table>

The format for the column log(Time) is mean ± standard deviation.

CV stands for coefficient of variation and is defined as (standard deviation / mean log(Time)) × 100.